Results package
Submodules
Results.extract_from_configuration module
- Results.extract_from_configuration.create_model(data_config: dict, model_config: dict, dataset: WeatherDataset, device: device) ACW
Creates the model from the model configurations.
- Args:
model_config (dict): Model configuration
- Results.extract_from_configuration.get_dataset(data_config: dict, device: device)
Gets the dataset in the proper format.
- Args:
data_config (dict): Dataset configuration
- Results.extract_from_configuration.get_training_components(model: ACW, training_config: dict, data_config: dict)
Returns the loss function, optimizer and scheduler.
- Args:
model (nn.Module): The ML model training_config (dict): Training configuration
- Results.extract_from_configuration.str_to_class(classname: str)
Translates class names from configuration files to classes.
Results.parser module
- class Results.parser.ConfigManager(config_path)
Bases:
object
Manages the configuration files, containing model, data and training details.
- get_data_config()
Retrieve data configuration.
- get_model_config()
Retrieve model configuration.
- get_output_config()
Retrieve output configuration.
- get_training_config()
Retrieve training configuration.
- load_config()
Load configuration from a YAML file.
- save_config(output_path)
Save configuration to a YAML file.
Results.run_configuration module
- Results.run_configuration.run_configuration(config_name, verbose=False, useConfigName=False, device=None, max_batches=None)
Runs a configuration file.
- Results.run_configuration.run_folder(folder_name: str, skip_files=[], verbose=False, useConfigName=False, device=None, max_batches=None)
Runs each configuration within a folder.
Results.save_results module
- class Results.save_results.DataSaver(config, run_number=None, run_name=None)
Bases:
object
Class responsible for saving (1) trained models with (2) their configuration and (3) training and evaluation metrics.
- end_run(model)
- get_base_dir()
- get_run_dir()
- log_metrics(log_dict)
- save_config(output_dir)
Save configuration as a YAML file.
- save_metrics(output_dir)
Save metrics as a JSON file.
- save_model(output_dir, model)
Save PyTorch model in the TorchScript format.
- wandb_summary(metric)